Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Clin Transl Sci ; 6(1): e142, 2022.
Article in English | MEDLINE | ID: covidwho-2185007

ABSTRACT

Background: Coronavirus Disease 2019 (COVID-19) instigated a flurry of clinical research activity. The unprecedented pace with which trials were launched left an early void in data standardization, limiting the potential for subsequent data pooling. To facilitate data standardization across emerging studies, the National Heart, Lung, and Blood Institute (NHLBI) charged two groups with harmonizing data collection, and these groups collaborated to create a concise set of COVID-19 Common Data Elements (CDEs) for clinical research. Methods: Our iterative approach followed three guiding principles: 1) draw from existing multi-center COVID-19 clinical trials as precedents, 2) incorporate existing data elements and data standards whenever possible, and 3) alignment to data standards that facilitate data sharing and regulatory submission. We also supported rapid implementation of the CDEs in NHLBI-funded studies and iteratively refined the CDEs based on feedback from those study teams. Results: The NHLBI COVID-19 CDEs are publicly available and being used for current COVID-19 clinical trials. CDEs are organized into domains, and each data element is classified within a three-tiered prioritization system. The CDE manual is hosted publicly at https://nhlbi-connects.org/common_data_elements with an accompanying data dictionary and implementation guidance. Conclusions: The NHLBI COVID-19 CDEs are designed to aid data harmonization across studies to achieve the benefits of pooled analyses. We found that organizing CDE development around our three guiding principles focused our efforts and allowed us to adapt as COVID-19 knowledge advanced. As these CDEs continue to evolve, they could be generalized for use in other acute respiratory illnesses.

2.
10th IEEE International Conference on Healthcare Informatics, ICHI 2022 ; : 465-468, 2022.
Article in English | Scopus | ID: covidwho-2063253

ABSTRACT

The National Institute of Health (NIH) launches the RADx Radical research collaboratives (RADx-rad) to advance new, non-traditional approaches for COVID-19 testing. RADx-rad projects are required to adopt common data elements (CDEs) to collect data to increase data interoperability. To overcome the challenges in finding appropriate CDEs for a wide range of study variables, we create a web application - IMI-CDE to ease the burden of mapping study variables to CDEs from researchers. IMI-CDE can automatically recommend CDE candidates for a study variable based on its name and description. Together with interactive mapping interfaces, IMI-CDE allows researchers to perform variable-CDE mapping with one mouse click. In addition, the IMI-CDE application supports users with multiple roles to work collaboratively on the mapping tasks. We have piloted the IMI-CDE with RADx-rad projects. 22 researchers from 8 different projects have started to use the IMI-CDE system for variable-CDE mappings. The beta-testing evaluators reported the system is intuitive, effective, and easy to use. © 2022 IEEE.

3.
Int J Med Inform ; 165: 104834, 2022 09.
Article in English | MEDLINE | ID: covidwho-1945205

ABSTRACT

OBJECTIVE: We summarized a decade of new research focusing on semantic data integration (SDI) since 2009, and we aim to: (1) summarize the state-of-art approaches on integrating health data and information; and (2) identify the main gaps and challenges of integrating health data and information from multiple levels and domains. MATERIALS AND METHODS: We used PubMed as our focus is applications of SDI in biomedical domains and followed the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) to search and report for relevant studies published between January 1, 2009 and December 31, 2021. We used Covidence-a systematic review management system-to carry out this scoping review. RESULTS: The initial search from PubMed resulted in 5,326 articles using the two sets of keywords. We then removed 44 duplicates and 5,282 articles were retained for abstract screening. After abstract screening, we included 246 articles for full-text screening, among which 87 articles were deemed eligible for full-text extraction. We summarized the 87 articles from four aspects: (1) methods for the global schema; (2) data integration strategies (i.e., federated system vs. data warehousing); (3) the sources of the data; and (4) downstream applications. CONCLUSION: SDI approach can effectively resolve the semantic heterogeneities across different data sources. We identified two key gaps and challenges in existing SDI studies that (1) many of the existing SDI studies used data from only single-level data sources (e.g., integrating individual-level patient records from different hospital systems), and (2) documentation of the data integration processes is sparse, threatening the reproducibility of SDI studies.


Subject(s)
Information Storage and Retrieval , Semantics , Humans , Mass Screening , Reproducibility of Results
4.
Neurocrit Care ; 33(3): 793-828, 2020 12.
Article in English | MEDLINE | ID: covidwho-778078

ABSTRACT

Since its original report in January 2020, the coronavirus disease 2019 (COVID-19) due to Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection has rapidly become one of the deadliest global pandemics. Early reports indicate possible neurological manifestations associated with COVID-19, with symptoms ranging from mild to severe, highly variable prevalence rates, and uncertainty regarding causal or coincidental occurrence of symptoms. As neurological involvement of any systemic disease is frequently associated with adverse effects on morbidity and mortality, obtaining accurate and consistent global data on the extent to which COVID-19 may impact the nervous system is urgently needed. To address this need, investigators from the Neurocritical Care Society launched the Global Consortium Study of Neurological Dysfunction in COVID-19 (GCS-NeuroCOVID). The GCS-NeuroCOVID consortium rapidly implemented a Tier 1, pragmatic study to establish phenotypes and prevalence of neurological manifestations of COVID-19. A key component of this global collaboration is development and application of common data elements (CDEs) and definitions to facilitate rigorous and systematic data collection across resource settings. Integration of these elements is critical to reduce heterogeneity of data and allow for future high-quality meta-analyses. The GCS-NeuroCOVID consortium specifically designed these elements to be feasible for clinician investigators during a global pandemic when healthcare systems are likely overwhelmed and resources for research may be limited. Elements include pediatric components and translated versions to facilitate collaboration and data capture in Latin America, one of the epicenters of this global outbreak. In this manuscript, we share the specific data elements, definitions, and rationale for the adult and pediatric CDEs for Tier 1 of the GCS-NeuroCOVID consortium, as well as the translated versions adapted for use in Latin America. Global efforts are underway to further harmonize CDEs with other large consortia studying neurological and general aspects of COVID-19 infections. Ultimately, the GCS-NeuroCOVID consortium network provides a critical infrastructure to systematically capture data in current and future unanticipated disasters and disease outbreaks.


Subject(s)
COVID-19/physiopathology , Common Data Elements , Forms as Topic , Nervous System Diseases/physiopathology , COVID-19/complications , Data Collection , Documentation , Humans , Internationality , Nervous System Diseases/etiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL